Transistor Structure

TSMC CMOS logic technology relied on planar transistor structures until 2014, when FinFETs were introduced into production with our 16nm technology. The FinFET structure resolved a fundamental limitation of planar device scaling, namely the poor electrostatic control of the channel at short gate lengths. FinFETs also enabled a partial decoupling of the transistor density scaling from device effective width scaling, which is an important feature for attaining increased transistor current per unit footprint of transistors. These FinFET characteristics enabled significant reduction of the power supply voltage as compared to planar transistors. FinFET also presents new degrees of freedom for power performance optimization, which contributed to significant enhancements in energy efficiency from 16nm to our most recently introduced 5nm technology node.

TSMC research and development continues to explore next-generation structures such as stacked nanowires or stacked nanosheets in our quest for new heights in computing performance and energy efficiency for future technology nodes.

Sort by:
11-20 of 78
  • Key Technology Enablers of Innovations in the AI and 5G Era

    2019
    The proliferation of AI and the deployment of 5G networks accelerate the transformation of our society into a highly connected world. Semiconductors are the indispensable elements in realizing all the product innovations. The progress and challenges of the state of art CMOS technology and advanced packaging, considered as critical pillars to continue the improvement of system functions, will be reviewed.
  • 5nm CMOS Production Technology Platform featuring full-fledged EUV, and High Mobility Channel FinFETs with densest 0.021um2 SRAM cells for Mobile SoC and High Performance Computing Applications

    2019
    A leading edge 5nm CMOS platform technology has been defined and optimized for mobile and HPC applications. This industry-leading 5nm technology features, for the first time, full-fledged EUV, and high mobility channel (HMC) finFETs with densest 0.021μm 2 HD SRAM. This true 5nm CMOS platform technology is a full node scaling from our successful 7nm node [4] in offering ~1.84x logic density, 15% speed gain or 30% power reduction. The 5nm platform technology successfully passed qualification [3] with consistently high yielding 256Mb HD/HC SRAM, and large logic test chip consisting of CPU/GPU/SoC blocks. Currently in risk production, this true 5nm platform technology is on schedule for high volume production in 1H 2020.
  • A High-Performance InAs/GaSb Core-Shell Nanowire Line-Tunneling TFET: An Atomistic Mode-Space NEGF Study

    2019
    Using a tight-binding mode-space NEGF technique, we explore the essential physics, design and performance potential of the III-V core-shell (CS) nanowire (NW) heterojunction tunneling field-effect transistor (TFET). The CS TFET “line-tunneling” current increases significantly with the core diameter d C and outperforms the best III-V axial “point-tunneling” NW heterojunction TFET I ON by up to 6× for d C = 6.6 nm. Reaching such a high level of current at low supply voltage, however, requires and involves specific and sometime unanticipated optimizations and physics that are thoroughly investigated here. In spite of the commonly accepted view, we also show and explain the weak gate-length dependency observed for the line-tunneling current in a III-V TFET. We further investigate the effect of electron-phonon scattering and discrete dopant impurity band tails on optimized CS NW TFETs. Including those non-idealities, the CS-TFET inverter performance significantly outperforms that of the axial TFETs. The low-power (LP) V DD = 0.35V CS-inverter delay is comparable to that of the high-performance (HP) Si CMOS using V DD = 0.55, which shows promise for an LP TFET technology with HP speed.
  • An Unique Methodology to Estimate The Thermal Time Constant and Dynamic Self Heating Impact for Accurate Reliability Evaluation in Advanced FinFET Technologies

    2018
    The increasing impact of self-heating effect (SHE) in complex FinFET structure is a serious reliability concern. Although the evaluation of SHE has become extremely arduous; this work proposes an in-situ layout based experimental solution to find out the precise thermal time constant (T TH ) due to SHE on advanced FinFET devices, even with the application of very pragmatic `circuit-like' gate and drain input waveforms. Using this precise T TH , the accurate dynamic thermal profile is found out from SPICE simulations. Finally, the true degradations due to different reliability mechanisms are evaluated including SHE impact and successfully compared with measured FinFET silicon data.
  • 7nm FinFET Plasma Charge Recording Device

    2018
    A new wafer-level coupling plasma charge recorder fabricated with 7nm FinFET CMOS logic process is presented in this paper. This plasma ion charge recording device provides the historic and quantitative plasma ion charges of damascene metallization steps in advanced 7nm FinFET COMS logic processes. The high-resolution plasma ion recorder is formed by an accurate FinFET coupling structure to store the plasma ion level and distribution of the whole wafer. By a simple wafer-level WAT measurement, the promising plasma charge recording device can efficiently collect the accumulated ion charges, ion polarization, and tiny plasma fluctuation of each metallization process step in 7nm FinFET CMOS logic technologies, which definitely provides a superior device and method in developing a reliable and non-latent plasma damage process for 7nm FinFET technology and beyond.
  • Tackling Fundamental Challenges of Carrier Transport and Device Variability in Advanced Si nFinFETs for 7nm Node and Beyond

    2018
    We demonstrated that the fundamental scaling challenges of carrier transport and device variability can be tackled by S/D epitaxy and HK/MG RPG optimizations on the leading-edge 7nm Si n FinFETs, paving the way for continuous scaling. Mitigations of S/D long-range Coulomb interactions and gate-corner work-function roll-up enhance IDSAT by 18% and 9% respectively at constant gate overdrive, translating to a 13% speed-power enhancement in the ring oscillator. These techniques show larger IDSAT enhancements than that of IDLIN. By using an improved characterization method, their unique transport characteristics are clarified.
  • A simulation perspective: The potential and limitation of Ge GAA CMOS

    2018
    The electrical characteristics of <110> n/p Ge nanowire transistors (NWTs) with the cross section of 6×6nm2 have been studied. The ION performance and the subthreshold swing are simulated by multi-subband Boltzmann transport equation and ballistic quantum transport solvers, respectively. The performance of <110> nGe NWTs is sensitive to the barrier height of interfacial layer due to highly-anisotropic Λ-valleys. The dimension-dependent k·p parameters based on tight-binding full band are used to address the strong confinement of pGe NWTs. Comparing to Si NWTs, the intrinsic ION is twice as high for both n/p Ge NWTs at 28nm channel length. As the channel length is scaled down, such ION benefit is maintained till the tunneling effect comes in and degrades the subthreshold swing.
  • InAs Nanowire GAA n-MOSFETs with 12-15 nm Diameter

    2016
    InAs nanowires (NW) grown by MOCVD with diameter d as small as 10 nm and gate-all-around (GAA) MOSFETs with d = 12-15 nm are demonstrated. I on = 314 μA/μm, and S sat =68 mV/dec was achieved at V dd = 0.5 V (I off = 0.1 μA/μm). Highest g m measured is 2693 μS/μm. Device performance is enabled by small diameter and optimized high-k/InAs gate stack process. Device performance tradeoffs between g m , R on , and I min are discussed.
  • InAs FinFETs with Hfin = 20 nm fabricated using a top-down etch process

    2016
    We report the first demonstration of InAs FinFETs with fin width W fin in the range 25-35 nm, formed by inductively coupled plasma etching. The channel comprises defect-free, lattice-matched InAs with fin height H fin = 20 nm controlled by the use of an etch stop layer incorporated into the device heterostructure. For a gate length L g = 1 μm, peak transconductance gm,peak = 1430 μS/μm is measured at V d = 0.5 V demonstrating that electron transport in InAs fins can match planar devices.
  • Formation of multiple dislocations in Si solid-phase epitaxy regrowth process using stress memorization technique

    2015
    This work investigates the formation mechanism of stress memorization technique (SMT)-induced edge dislocations and stacking faults during solid-phase epitaxy regrowth (SPER) using molecular dynamics (MD) simulation. During the SPER process of a patterned amorphous Si under a high-tensile capping film, growth fronts along the (1 1 0) and (0 0 1) planes collapse to form 5- and 7-rings which trigger the Frankel partial dislocation in the {1 1 1} plane. In addition, the line defects of stacking faults along {1 1 1} plane are generated with two symmetric boundaries of atomic structures which are confirmed as micro-twin defects. The MD simulation results are validated using high-resolution transmission electron microscopy and inverse fast Fourier transform images. The strain distribution obtained from the atomic structure reveals that the stress field is mainly caused by Frankel partial dislocations and the minor stress effect from the micro-twin defects.
11-20 of 78